LECTURE 34 - PRODUCTION OF COMPRESSED AIR

SELF EVALUATION QUESTIONS AND ANSWERS

1: The bore and stroke of a single acting air compressor are both 10 cm . Clearance volume 80 cc , index of compression and expansion 1.23. Suction pressure 1 bar, delivery pressure 7 bar, speed 4000 RPM. If the temperature at the beginning of the compression is $22^{\circ} \mathrm{C}$. Find the amount of free air dealt with by the compressor per minute at a pressure of $\mathbf{1 . 0 5}$ bar and temperature of $16^{\circ} \mathrm{C}$

2: A single acting stage air compressor is required to deal with $17 \mathrm{m3} / \mathrm{min}$ of air measured at 1 bar and $15^{\circ} \mathrm{C}$. The pressure and temperature at the end of suction is 0.98 bar and $30{ }^{\circ} \mathrm{C}$. the delivery pressure is 6.3 bar . The RPM of the compressor is 500 . Assuming a clearance volume of 5% of the stroke volume, laws of compression and expansion as) $\mathbf{p} \mathbf{V}^{\mathbf{1 . 3 2}}=$ Constant , calculate the necessary stroke volume, temperature of the air delivered and power of the compressor.

3: A single stage, single cylinder air compressor has a cylinder diameter 15 cm , and a stroke of 22.5 cm . Air is drawn into the cylinder at a pressure of 1.05 bar and a temperature of 15 . It is then compressed adiabatically to 6.3 bar. Find the theoretical power required to drive the compressor if its speed is 100 RPM. Find also the weight of the air compressed per minute.

4: A two stage air compressor compresses $1 \mathrm{~kg} / \mathrm{min}$ of air from 1 bar to 42.18 bar. Initial temperature is $15^{\circ} \mathrm{C}$. At the intermediate pressure the intercooling is perfect. The compression takes place according to law $p V^{1.35}=$ Constant. Neglecting the effect of clearance determine the minimum power required to run the compressor. Also find the mass of cooling water required in the intercooler, if the temperature rise of water is limited to $5^{\circ} \mathrm{C}$

Q1 Solution

n is the polytropic $=1.23$ for air
$d=L=10 \mathrm{~cm}$
$\mathrm{N}=400 \mathrm{RPM}, p_{2}=7 b a r$
$p_{1}=1 \operatorname{bar} T_{1}=22^{\circ} \mathrm{C}$
$T_{a}=16^{\circ} \mathrm{C}$
$P_{a}=1.05 \mathrm{bar}$
$V_{c}=80 \mathrm{cc}$
Swept volume $=V_{S}=\frac{\pi}{4}\left(d^{2}\right) L=\frac{\pi \times 0.1^{2} \times 0.1}{4}=0.0007853 \mathrm{~m}^{3}$
clearance volume $=V_{c}=80 c c=0.00008 \mathrm{~m}^{3} / \mathrm{cycle}$
clearance ratio $=\frac{V_{c}}{V_{s}}=\frac{0.00008}{0.0007853}=0.1018$
$\eta_{\text {volumetric }}=\frac{\text { Actual volume of air taken referred to free air conditions }}{\text { swept volume of the compressor }}$
$\eta_{\text {volumetric }}=\frac{p_{1}\left(T_{a}\right)}{p_{a} T_{1}}\left[1+\mathrm{k}-\mathrm{k}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\mathrm{n}}}\right]$
$\eta_{\text {volumetric }}=\frac{1 \times 289}{1.05 \times 295}\left[1+0.101-0.1018\left(\frac{7}{1}\right)^{\frac{1}{1.23}}\right]=0.5659=56.59 \%$
Volume of air $V_{a}=0.5659 \times 0.0007853=0.000444 \mathrm{~m}^{3} /$ cycle

Volume of air $V_{a}=0.000444 \times 400=0.17776 \mathrm{~m}^{3} / \mathrm{min}$
mass of air $=\frac{p_{a} V_{a}}{R T_{a}}=\frac{1.05 \times 100 \times 0.1776}{0.287 \times 289}=0.225 \mathrm{~kg} / \mathrm{cycle}$
Thus, $V_{2}=520.5 \mathrm{~cm}^{3}$

Q2 Solution

n is the polytropic $=1.32$ for air
$N=500 \mathrm{RPm}$
$p_{2}=6.3 \mathrm{bar}$
$p_{\mathrm{a}}=1 \operatorname{bar} T_{1}=30^{\circ} \mathrm{C}$
$T_{a}=15^{\circ} \mathrm{C}$
$V_{c}=17 \mathrm{~m}^{3} / \mathrm{min}$
clearance ratio $=\mathrm{k}=\frac{V_{c}}{V_{s}}=\frac{5}{100}=0.05$
$\eta_{\text {volumetric }}=\frac{\text { Actual volume of air taken referred to free air conditions }}{\text { swept volume of the compressor }}$
$\eta_{\text {volumetric }}=\frac{p_{1}\left(T_{a}\right)}{p_{a} T_{1}}\left[1+\mathrm{k}-\mathrm{k}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\mathrm{n}}}\right]$
$\eta_{\text {volumetric }}=\frac{0.98 \times 288}{1 \times 303}\left[1+0.05-0.05\left(\frac{6.3}{0.98}\right)^{\frac{1}{1.32}}\right]=0.8452=84.52 \%$
$\eta_{\text {volumetric }}=\frac{V_{a}}{V_{s}}$
$V_{s}=$ swept volume $=\frac{17}{0.452}=20.11 \mathrm{~m}^{3} / \mathrm{min}$
$V_{S}==\frac{20.11}{500}=0.0402 \mathrm{~m}^{3} /$ cycle
mass of air $=\frac{p_{a} V_{a}}{R T_{a}}=\frac{1 \times 100 \times 17}{0.287 \times 288}=20.56 \mathrm{~kg} / \mathrm{min}$
$T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}=303\left(\frac{6.3}{0.98}\right)^{\frac{0.32}{1.32}}=475.71 \mathrm{~K}$
power $=\frac{n}{n-1} \operatorname{mR}\left(T_{2}-T_{1}\right)$
power $=\frac{1.32}{1.32-1} \times 0.3427 \times 0.287 \times(465.71-303)=70 \frac{\mathrm{~kJ}}{\mathrm{~s}}$ or 70 kW

Q3Solution

γ is the polytropic $=1.4$ for air
$N=100 \mathrm{RPm} d=15 \mathrm{~cm}, l=22.5 \mathrm{~cm}$
$p_{1}=1.5 \mathrm{bar}$
$p_{2}=6.3 \mathrm{bar}$
$T_{1}=15^{\circ} \mathrm{C}$

Solution

Swept volume $=V_{S}=\frac{\pi}{4}\left(d^{2}\right) L$
Swept volume $=V_{S}=\frac{\pi \times 1.5^{2} \times 0.225}{4}=0.003976 \mathrm{~m}^{3}$
mass of air $=\frac{p_{a} V_{a}}{R T_{a}}=\frac{1.05 \times 100 \times 0.003976}{0.287 \times 288}=0.00505 \mathrm{~kg} / \mathrm{cycle}$
weight of air per minute $=0.00505 \times 100=0.505 \mathrm{~kg} / \mathrm{min}$
$V_{1}=0.003976 \mathrm{~m}^{3} /$ cycle
$V_{1}=0.003976 \frac{\mathrm{~m}^{3}}{\text { cycle } \frac{100}{60}}=0.006626 \mathrm{~m}^{3} / \mathrm{sec}$
Power $=\frac{\gamma p_{1} V_{1}}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}-1\right]$
Power $=\frac{1.4 \times 1.05 \times 100 \times 0.006626}{1.4-1}\left[\left(\frac{6.3}{1.05}\right)^{\frac{1.4-1}{1.4}}-1\right]=1.62 \mathrm{~kW}$
power $=\frac{\gamma}{\gamma-1} \mathrm{mR}\left(T_{2}-T_{1}\right)$
power $=\frac{1.3}{1.3-1} \times 0.294 \times 0.287 \times(492.7-313)=65.7 \frac{\mathrm{~kJ}}{\mathrm{~s}}$ or 65.7 kW
Isothermal power $=p_{1} V_{1} \ln \left(\frac{p_{2}}{p_{1}}\right)=m R T_{1} \ln \left(\frac{p_{2}}{p_{1}}\right)$
Isothermal power $=0.294 \times 0.287 \times 313 \times \ln \left(\frac{7}{0.98}\right)=51.92 \mathrm{~kW}$
Isothermal efficiency $=\frac{51.92}{65.7}=0.79=79 \%$

Q4 Solution

n is the polytropic $=1.2$ for air
$m=1 \frac{\mathrm{~kg}}{\min }=\frac{1}{60}=0.0166 \mathrm{~kg} / \mathrm{sec}$
$p_{1}=1 \operatorname{bar} T_{1}=15{ }^{\circ} \mathrm{C}$
$p_{3}=42.18$ bar

Solution

For perfect intercooling
$p_{2}=\sqrt{\mathrm{p}_{1} \mathrm{p}_{3}}=\sqrt{1 \times 42.18}=6.49 \mathrm{bar}$
$T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}=288\left(\frac{6.49}{1}\right)^{\frac{0.35}{1.35}}=467.7 \mathrm{~K}$
Minimum power required
$W=\frac{n m R}{n-1}\left(T_{2}-T_{1}\right)$
$W=\frac{1.35 \times 0.0166 \times 0.287}{1.35-1}(467.7-288)=3.3 \mathrm{~kW}$
Heat rejected in the intercooler
$Q_{\text {rejected }}=m_{w} c_{p w}(\Delta T)$
$2.99=0.0166 \times 4.187(5)$
Solving we get
$m_{w}=0.1432 \mathrm{~kg} / \mathrm{sec}$

